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Abstract. Starting from the, expression for the superdeterminant of  a supermatrix we propose 
a definition for the corresponding characteristic polynomial. We prove that each supermahix 
satisfies ils characteristic equation. In some particular cases we are able to constluctpolynomials 
of lower degree which are also shown IO be nullified by the supermahix. 

In the past few years there has been a great deal of interest in 2+1 dimensional Chem-Simons 
(CS) theories [L], mainly in relation with conformal field theory [2, 31, link invariants L2.41, 
and quantum groups [2,51. Pure cs theones are of topological nature and the fundamental 
degrees of freedom are the traces of group elements constructed as the holonomies (or 
Wilson lines, or integrated connections) of the gauge connection around oriented closed 
curves in the manifold. The observables are the expectation values of the Wilson lines 
which tumed out to be realized as the various knot polynomials known to mathematicians 
[6]. Since Cs theories are also exactly soluble and possess a finite number of degrees of 
freedom, another aspect of interest is the reduction of the initially infinite-dimensional phase 
space to the subspace of the true degrees of freedom. The Cayley-Hamilton theorem has 
played an important role in the construction of the so called skein relations, which are 
relevant to @e calculation of expectation values [7], and also in the process of reduction 
of the phase space. The simplest example of the latter point arises in the discussion of 
the reduced phase space in a sector of anti-de Sitter gravity in 2 + 1 dimensions, which 
is equivalent to the Chem-Simons theory of the'group SO(2,Z) [PI. This theory can be 
more easily described in terms of two copies of the group SL(2, f l ) ,  which is the spinorial 
group of SO(2,Z) [9]. The gauge invariant degrees of freedom associated to one genus 
of an arbitrary genus g two-dimensional, surface tum out to be traces of any product of 
powers of two SL(2,  f l ) ,  matrices MI and Mz, which correspond to the holonomies of the 
two homotopically distinct trajectories on one genus. Nevertheless, one should be able to 
reduce this infinite set of traces to a finite set of degrees of freedom: It is precisely at this 
point where the Cayley-Hamilton theorem finds its use. In the case of SL(2, p )  we have 
the Cayley-Hamilton identity (MI)' - Tr(M1)M; + I  = 0. By multiplying this equation by 
MzM;' and taking traces we obtain the following relation among the traces 
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By using equation ( I ) ,  the general degree of freedom Tr(M~p'Mzq1M~p2M~q1 ... 
M1PnM29n . . .), for any pi. 9; in ,Z, can be shown to be reducible and can be expressed as a 
function of three traces only: Tr(MI), Tr(Mz) and Tr(MI Mz) [9]. A similar reduction can be 
performed in the case of 2 + 1 super de Sitter gravity, which is the Chem-Simons theory of 
the supergroup Usp(211, C )  [IO]. The novelty here is that one is dealing with supermatrices 
instead of ordinary matrices. In the particular case considered, a Cayley-Hamilton identity 
for the supermatrices was obtained in a heuristical way and a relation analogous to (1) was 
derived for the supertraces. This allowed the carrying out of the reduction of the infinite 
dimensional phase space, this time in terms of five complex supertraces [ 111. It is worth 
remarking that the quantization of these true degrees of freedom led to a quantum algebra 
structure both in the de Sitter and super de Sitter cases. 

In this letter we discuss the general proof of the Cayley-Hamilton theorem for 
supermatrices. This is an interesting problem by itself, besides its applications in the study 
of the reduced phase space in Chem-Simons theories defined over a supergroup. Basically 
our problem is twofold first we have to find an adequate definition of the characteristic 
polynomial of a supermatrix and then we have to show that indeed the supermatrix satisfies 
its characteristic equation. The same procedure has to be followed for the null polynomials 
of lower degree. 

A ( p  + q )  x ( p  + 9) supermatrix is a block manix of the form 

where A,  B ,  C and D are p x p .  p x 9.9 x p . 9  x 9 matrices respectively. The 
distinguishing feature with respect to an ordinary matrix is that the matrix elements 
M R S ,  R = (i, a), S = ( j ,  B )  are elements of a Grassmann algebra with the property that 
Ai, (i, j = 1, . . . p )  and Duo (U, p = I ,  . . .9) are even elements, while B;, and Col are odd 
elements of such algebra. Let us recall that the ordinary matrix addition and the ordinary 
matrix product of two supermatrices is again a supermatrix. Nevertheless, such concepts as 
the trace and the determinant need to be redefined, because of the odd component piece of 
the supermatrix., The basic invariant under similarity transformations for supermatrices is 
the supertrace, defined by Str (M) = Tr(A) -Tr(D), where the trace over the even matrices 
is the standard one. The generalization of the determinant, called the superdeterminant, is 
obtained from the supertrace by defining 6 In(S det M) = Str (M-IaM).  In this compact 
notation we are sumarizing the ( p  + 4)' relations which give the partial derivatives of the 
function In(S det M )  with respect to the entries M R S  of the supermatrix, in terms of the 
elements of the inverse supermatrix M-I. For example, ain(SdetM)/aMij = (M-I),i 
for the even indices i, j .  These first order partial differential equations are subsequently 
integrated under the boundary conditions SdetZ = 1, where I is the unit supermatrix, to 
produce the following equivalent two forms of calculating the superdeterminant [I21 

det A - - det(A - BD- lC)  
Sdet(M) = 

det D det(D - CA-'B) '  (3) 

Here all the matrices involved are even in the Grassmann algebra and det has its usual 
meaning. Let us consider now the function h(x)  = Sdet(xZ - M )  which could be naively 
taken as the analogous of the standard characteristic polinomial. Nevertheless, this function 
is in fact the ratio of two monic poiinomials 
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each form arising from the two alternatives (3) of calculating the superdeterminant. The 
explicit expressions for the numerators and denominators are 

.F(x) = det(d(x)(xr - A )  - Bdj(x1- D)C) & = d(X)P+* ( 5 4  
F ( x )  = &)'+I G(x) = det(a(x)(xl- D) - Cadj(x1 - A ) B )  (5b) 

where we have used the basic relation (F) - '  = [det(F)]-ladj(F) valid for any even matrix 
F. Here a ( x )  = det(x1 - A)  and d ( x )  = det(xl - D). 

The proposed definition of the characteristic  polynomial P ( x )  for an arbitrary 
supermatrix is 

P(x)  = F(x)G(x)  = F ( x ) 6 ( x )  = a(x)P+ld(x)P+l. (6) 

For notational simplicity we will not necessarily write explicitly the x-dependence on many 
of the polynomials considered in the sequel. 

Nevertheless, and motivated by the work of [13], we have realized that there are 
some cases in which we can construct null polynomials of lowerpegree according to the 
factorization properties of the basic polj~~omials F. 6, F,  G . ~  At this point it is important 
to Observe that we do not have a unique factorization theorem for polynomials defined over 
a Grassmann algebra. This can be seen from the identity x z  = (x  + a ) ( x  - a), where a 
is an even GraSsmann with a' = 0. The construction of such null polynomi~als starts from 
finding the divisors of maximum degree of the pairs F ,  6, (F ,  G) which we denote by r(s) 
respectively. This means that one is able to write 

- - -  
F = r f  G = r j  

F =sf G = sg 
(7) 

where all polynomials are monic and also f, 5, f .  g are of least degree by construction. 
They must satisfy 

fl2 = f/g (8) 

because of the equation (4) and the expressions in (7) might be not unique. Let us observe 
that in the case of polynomials over the complex numbers equation (8) would imply at most 
f = Af, j = Ag~with h. being a constant. Since we are considering polynomials over a 
Grassmann algebra this is not necessarily true as can be seen again in the above mentioned 
identify x / ( x  -a) = (x +a)/$. which we have rewritten in a convenient way. For each 
family of possible factorizations written in equation (7) we define a null polynomial P ( x )  
as 

P(x) = f ( x ) g ( x )  = f(x)&) (9) 

which is clearly of less degree than P(x).  The characteristic polynomial P(x) is just a 
particular case of these null polynomials when r = s = 1. In the case where a(x) and d ( x )  
are coprime it can be shown that the factorization in equation (7) is unique with f = f and 

Since we are interested in the Cayley-Hamilton theorem, now we have to prove that 
both choices (6)  and (9) are in fact such that P(M) = 0 and P ( M )  = 0 respectively. We 
emphasize again that the former case reduces to a particular case of the latter, so that we 

g = 2 [13]. 
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will concentrate only on P(x ) .  Part of our strategy to verify that P(M) = 0 is closely 
related to one of the standard methods to prove the Cayley-Hamilton theorem for ordinary 
matrices 1141. The starting point is the following: if for the supermatrix ( X I  - M ) ,  with 
M being an n x n supermatrix independent of x .  there exists a polynomial supermatrix 
N(x) = Nox"'-' + N I ~ " ' - , ~ +  .. + Nm-lxo, (where each Nk, k = 0,. . . , m - 1, is an n x n 
supermatrix) such that 

(10) 

where P ( x )  = pox" + plx"-l + . . . + pnxo is a numerical polynomial over the Grassmann 
algebra, then P(M) = poM" + plM"-' + . . . + p,I 0. The proof follows by comparing 
the independent powers of x in equation (IO). The equality of the highest power in x on 
both sides implies m = n, together with NO = po l .  This leads to the following set of 
supermatrix relations for the remaining powers 

(XI - M)N(x) = P(x) I  

Nn-i - MNn-2 = p,,-iI 

-MNn-i = p.1. 

By multiplying on the left the k-th equation by M"-k and adding up all the relations 'we 
can verify that the terms involving Nk cancel out in the LHS leaving only the term -poM". 
The RHS is just P ( M )  - poM" so that we have the result P(M) = 0 as required. In 
the standard case of purely even matrices N(x) is just given by N(x) = adj(x1 - M )  = 
det(x1 - M)(xl-  M)-', and P ( x )  = det(x1 - M). 

In the case of a supermatrix we do not have an obvious generalization either of the 
polynomial matrix adj(x1 - M) or of det(x1- M). Nevertheless, following the analogy as 
closely as possible we .define 

N(x) P ( x ) ( x 1  - M)-' (12) 

where P ( x )  is the polynomial (9) introduced previously. The challenge now is to prove 
that N(x), which trivially satisfies'the equation (10). is indeed a polynomial matrix. In the 
first place we calculate (XI - M)-' in block form, with the result 

(XI - M);; = ( ( X I  - A )  - B(xI  - D)-'C)-' 
(XI - M);' = ( X I  - A ) - ' B ( ( x l -  D )  - C(x1 - A)-'B)-'  
( x l  - M),' = ( X I  - D)-'C((xI  - A )  - B ( x l -  D)-'C)-' 
( X I  - M); = ( ( X I  - D )  - C(x1- A)-'B)- '  

( W  
(13b) 
(1%) 
(13a 

where the subindices 11, 12, 21 and 22 denote the corresponding p x p .  p x q. q x p .  
and q x q blocks respectively. Before considering in equation (12) the specific case of the 
previously defined P ( x )  it will prove most convenient to rewrite the expressions (13) in 
terms of derivatives of the even fuctions and G with respect to the generic supermatrix 
elements Aij,  Bi,, C,;, &. To this end we use the basic property 

6lndetQ =Tr(Q-lSQ) (14) 
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valid for any  even matrix Q. The meaning of this compact notation has been already 
explained in the paragraph preceeding equation (3) and, murutis mutandis, applies also to 
even matrices. From equation (5u) we can rewrite F as 

p = d”det((x2 - A )  - B(xI - D)-’C). (15) 

with respect to Ajj by means of equation (14) we readily Calculating the variation of In 
obtain 

for the 11 block of (XI - M)-’. The analogous variation of lnp,  this time with respect to 
Bj,, leads to 

(17) 

for the 21 block of (XI -.M)-‘. Here we are taking the derivative with respect to an 
odd Grassmann number from the left in the sense that SP = SBj,(ap/aBj,). Similar 
calculations starting from In G lead to the following expressions for the remaining blocks 
of ( x i  - M)-’ 

I ac 
G acCi G a& 

( X I  - M);; = 
1 ac 

( X I  - M);’ = --- 

Now we come to the last step of our argument which consists in using the polynomial 
defined in equation (9) together with the corresponding factorization properties (7) and (8), 
to prove that N ( x )  = P(x) (x  - M)-’ is a polynomial matrix. 

Let us consider the block-elements 11 and 21 of P(x)(xI  - M)-’ in the first place. 
According to the expression (16) together with (7) and (9), &e first block-element can be 
written as 

The first term of the RHS is clearly of polynomial character. In order to transform the second 
term we make use of the property 

which follows from the factorization (7) of 6, together with the fact that 6 is just a function 
of DU8. according to equation (57). In this way and using the relation (8) we obtain 

a? 
l ’ -  aAji aAji - R- N . . -  f- ag 

which leads to the conclusion that the block-matrix Njj is indeed polynomial. The proof 
for Nui runs along the same lines, except that now the derivatives are taken with respect to 
Bi, and that we have to use a In G/a  Bi, = 0, instead of equation (20). 
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The remaining terms N,, and Nap can be dealt with in analogous manner by considering 
the derivatives of G with respect to Cui and Dg.. and by replacing the condition (20) by 
8 In F/aC,i = 0 and a In F/aDg. = 0 respectively. The results are again of the form (21). 

P(x) (x l  -M)-I  is a polynomial matrix, for 
any P ( x )  defined in equation (9). Then it follows immediately that (XI - M)N(x) = P ( x ) I  
and by using the statement after equation (10) we obtain the desired result P(M) = 0. The 
same conclusion holds for the characteristic polynomial F(x)  defined in equation (6). This 
concludes the proof of the Cayley-Hamilton theorem for supermatrices. 

Before closing we give two simple examples of null polynomials of minimun degree 
for supermatrices, which belong to the case when the factorization (7) is unique. The first 
onecorrespondstoanar~nary(l+l)x(l+l)supermatrixwithelementsA~l =a, 2311 = 
a, C I ~  = p and Dll = d. The result is [lS] 

To summarize, we have proved that N(x)  

P ( X )  = (a - d)x2 - (a2 - d2 + &p)r + ad(a - d) + (a + d)& 

The second example has to do with (2 + 1 )  x (2+ 1) supermatrices M which belong to the 
supergroup Osp(112; Q'). In this case the null polynomial is 1111 

P ( x ) = x 3 - ( 2 + S t r M ) ( x 2 - x ) - 1 .  (23) 

A detailed version of this work will be presented elsewhere 1161. 
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